Информация о проекте «Разработка комплекса бортового оборудования для вертолёта Ми-171A2»

Для обеспечения требований ключевых эксплуатантов вертолетов типа Ми-8/17 ОАО «УКБП» разработало комплекс бортового оборудования КБО-17 обеспечивающий:

- эксплуатацию вертолетов как по ПВП, так и по ППП, днем и ночью, в простых и сложных метеоусловиях с обеспечением выполнения авиационных работ (воздушная разведка, транспортировка грузов, поисково-спасательные операции и т.п.);
 - качественно новый уровень решения экипажем задач вертолетовождения;
 - глубокий автономный встроенный контроль авионики вертолета.

На НТС ОАО «Вертолёты России» была отмечена глубина унификации комплексов КБО-17 и КБО-226 в 83% и одобрены технические решения, примененные при разработке этих КБО. Эти технические решения одобрены также отраслевыми институтами (ГосНИИАН, ГосНИИГА) и ведутся процедуры сертификации АР МАК.

В состав КБО-17 входят основные комплексообразующие системы разработки и производства ОАО «УКБП»: комплексная система электронной индикации и сигнализации КСЭИС-В1; система управления общевертолётным оборудованием СУОВО-В1; информационный комплекс высотно-скоростных параметров ИК ВСП-171; интегрированная система резервных приборов ИСРП-5.

В состав комплекса интегрированы изделия отечественных производителей: пилотажный комплекс вертолёта ПКВ-171А и пульт-вычислитель навигационный ПВН-1-03 производства ОАО «КБПА»; радиовысотомер А-053-08 (ОАО УПКБ «Деталь»); метеолокатор контур-10М («Контур-НИИРС»); круглосуточная обзорная система КОС-17 (ОКТБ «Омега»); комплекс средств связи КСС-17 (ООО НППП «Прима»); бортовой регистратор МБР-ГА-01 (ОАО

«Прибор»); система предупреждения ранней близости земли СРПБЗ, аппаратура приёмника дифференциальных данных, самолётный ответчик СО-2010 (ЗАО «ВНИИРА-Навигатор»).

В состав КБО-17 интегрированы также системы зарубежного производства: курсовертикаль LCR-100 (Nortrop grumman); автоматический радикомпас NAV-4000 и радиодальномер DME-4000 (Rokwell Collins); генератор карт RN-7 (Litef)

Макет кабины вертолета Ми-171A2 с оборудованием комплекса КБО-17 на выставке HeliRussia-2013

Основные технические характеристики

комплекса бортового оборудования КБО-17

вертолета Ми-171А2

1. Масса и мощность

Параметр	КБО-17 (базовая комплектация)	КБО-17-1 (полная комплектация)
Масса, не более, кг	247,42	376,12
Мощность потребляемая комплексом бортового оборудования КБО-17 (с обогревом), Вт	2490,0 (5190,0)	3548,7 (6323,7)

2. Погрешности измерения основных параметров полета:

Параметр	Погрешность измерения (на уровне 2σ), не более		
	Основными системами	Резервным прибором	
Углы крена и тангажа, °	±0,5 (в горизонт. полете) ±1,0 (при маневрировании)	±(от 1 до 4) (в горизонт. полете) ±8,0 (при маневрировании)	
Гиромагнитный курс (ГМК), °	±1,0 (в горизонт. полете) ±2,0 (при маневрировании)	±3,0 (в горизонт. полете) ±6,0 (при маневрировании)	
Гирополукомпасный курс, °/час	±5 (уход)	-	
Истинный курс, °	±2	-	
Курсовой угол радиостанции (КУР), °	±3	-	
Азимут маяка VOR, °	±0,2	-	
Барометрическая высота, м	от 4 до 7	$\pm (5\pm 0,001 H_{a6c})$	
Приборная скорость, км/ч	от 3 до 8	от 3,5 до 10	
Вертикальная скорость (Vy), м/с	от 0,3 + 0,01Vy	от 0,3 до 0,8	
Температура наружного воздуха, °С	±1	±1	

Продольная, поперечная и вертикальная составляющая воздушной скорости, км/ч	±5	-
Геометрическая высота, м	±0,45 или ±0,02H _{тек}	-

3. Погрешности стабилизации параметров полета автопилотом:

Параметр	Погрешность стабилизации (на уровне 2σ), не более
Углы крена и тангажа, °	±1,0
Курс (путевой угол), °	±1,5
Барометрическая высота, м	±10 (при Нбар≤500 м) ±20 (при Нбар>500 м)
Приборная скорость, км/ч	±10
Вертикальная скорость (Vy), м/с	±10

4. Погрешность определения текущих координат местоположения вертолета:

Режим определения коордтинат	Погрешность определения координат (с вероятностью 0,95), не более
Спутниковая навигация (СНС) при использовании комбинированного приемника GLONASS/GPS	100 м
Счисление в режиме комплексной обработки информации в условиях отсутствия данных от РТС и СНС (режим «прогноз»)	 в течение первых 15 мин – на уровне точности последней коррекции, по истечении 15 мин – 5 км за час полета
Инерциально-спутниковый режим	100 м
Курсо-аэрометрическое счисление	6% от пройденного пути в штилевых условиях

5. Основные выполняемые функции:

- решение задач навигационного обеспечения полета вертолета:
- решение задач пилотирования вертолета при автоматическом, автоматизированном и директорном способах управления полетом вертолета по заданному плану полета, по оборудованным и необорудованным радиотехническими средствами трассам, а также вне трасс;
- -обеспечение точных и неточных заходов на посадку на аэродромы, оборудованные радиотех ническими посадочными системами, ЛККС или на необорудованные аэродромы;
- контроль и индикация параметров и режимов работы силовой установки, общевертолетного оборудования,
 формирование и выдача экипажу вертолета мнемонической, текстовой, звуковой и речевой сигнальной информации;
 - формирование и отображение экипажу вертолета:
 - пилотажно-навигационной информации;
 - информации о плане полета и состоянии выполнения полетного задания;
 - информации о метеонавигационной обстановке;
 - видеоинформации от круглосуточной обзорной системы;
 - картографической и аэронавигационной информации,
 - информации о потенциальной угрозе столкновения с поверхностью;
 - информации о положении троса внешней подвески;
 - информации о препятствиях (ЛЭП, мачты, отдельно стоящие деревья и т.д.).
 - формирование и регистрация массива полетной информации;
- автоматизированная и ручная настройка радиотехнических систем навигации и посадки и радиосвязного оборудования;
 - комплексное обеспечение внутренней и внешней радиосвязью экипажа вертолета;
 - создание оптимального светотехнического и эргономического климата кабины;

- обеспечение взаимодействия со службами ОрВД.

Информация о выполненной работе по комплексу бортового оборудования Ми-171A2 в 2012 году

В 2012 году ОАО «Ульяновским конструкторским бюро приборостроения» в рамках проекта по созданию комплекса бортового оборудования вертолета Ми-171А2 (комплекс КБО-17) были выполнены следующие работы:

- 1. Завершена разработка КД на следующие комплексообразующие компоненты КБО:
 - комплексная система электронной индикации и сигнализации КСЭИС-В1-1;
 - система управления общевертолетным оборудованием СУОВО-В1-1;
 - интегрированный комплекс высотно-скоростных параметров ИКВСП-171;
 - интегрированная система резервных приборов ИСРП-5;
 - пульты управления общевертолетным оборудованием ПУОВО-171;
 - система табло аварийной и уведомляющей сигнализации СТАУС-2-1;
 - система внутрикабинного освещения СВКО-6-1.
- 2. Изготовлены опытные образцы блоков систем КСЭИС-В1-1, СУОВО-В1-1, ИКВСП-171, ИСРП-5, ПУОВО-171, СТАУС-2-1, СВКО-6-1, проведены предварительные испытания.
- 3. Завершена разработка и согласование схем соединений, протоколов информационного взаимодействия систем комплекса.
- 4. Завершена разработка и согласование с ОАО «МВЗ им.М.Л.Миля» программ функционирования систем КСЭИС-В1-1, СУОВО-В1-1, ИСРП-5, СТАУС-2-1.

- 5. Разработаны первые версии программного обеспечения систем КСЭИС-В1-1, СУОВО-В1-1, ИСРП-5. Процессы разработки ПО ведутся в соответствии с требованиями КТ-178В.
- 6. Проведена отработка функционирования ПО систем на автономных системных стендах и отработка взаимодействия систем на комплексном стенде в ОАО «УКБП».
- 7. На комплексном стенде с реальным бортовым оборудованием проведены отработки таких функций КБО как:
 - формирование и отображение пилотажно-навигационной инфрмации;
 - формирования и отображения информации о состоянии силовой установки и общевертолетного оборудования;
 - распределения и управления коммутацией электропитания бортовых потребителей,
 - управления вертолетными агрегатами,
 - формирования и отображения метеоинформации.
- 8. Изготовлены три образца комплекса КБО-17 для вертолетов Ми-171A2 ОП-1 (поставлен в ОАО «МВЗ им.М.Л.Миля»), ОП-2 и комплексного стенда ОАО «УКБП».
- 9. В настоящее время ведется наземная отработка комплекса на борту вертолета Ми-171A2 ОП-1 и отработка второстепенных функций КБО на комплексном стенде в ОАО «УКБП».

Информация о проекте «Комплекс бортового оборудования Ту-204CM с экипажем из двух человек»

Применение комплекса бортового оборудования самолета Ту-204СМ, разработанного ОАО «УКБП», обеспечило:

- 1) Улучшение следующих технико экономических показателей по сравнению с Ту-204:
 - сокращение состава членов экипажа до двух человек;
 - сокращена масса бортового оборудования с 164,4 кг до 40,5 кг;
 - уменьшился объем бортового оборудования с 53 К до 14,5 К (размер блока по ГОСТ 26765.16-87);
 - понизилось электропотребление с 2100 Вт до 406 Вт;
 - повысилась надежность вычислительных средств бортового оборудования с 5000 часов до 15000 часов;
 - снизилась средняя трудоемкость технического обслуживания в 3 раза;
 - снизилось среднее время восстановления работоспособности бортового оборудования в 3 раза;
 - сокращены затраты на обслуживание за счет уменьшения номенклатуры ЗИП в 2 раза;
 - сокращены затраты на сертификацию ПО наращиваемых функций в 3 раза.
- 2) Улучшение показателей безопасности полета за счет автоматизации процедур контроля и управления общесамолетным оборудованием, а также за счет оптимизации информационно-управляющего поля кабины.
- 3) Сокращение времени предполетной подготовки, за счет использования передовых технологий обслуживания с использованием бортовой системы технического обслуживания.

Комплекс бортового оборудования самолета Ту-204СМ, разработанный ОАО «УКБП», соответствует по своим технико-экономическим показателям современным и перспективным зарубежным аналогам и мировым стандартам, в

части обеспечения безопасности полета, стоимости оборудования, стоимости эксплуатации и обеспечивает конкурентную способность самолета Ту-204СМ на мировых рынках.

Состав комплекса бортового оборудования:

- бортовая система справочной информации БССИ-204;
- бортовая система технического обслуживания БСТО-204;
- система управления общесамолетным оборудованием СУОСО-204;
- система преобразования аналоговых и дискретных сигналов СПАДИ-204;
- система измерения воздушных данных СИВД;
- комплексная система электронной индикации КСЭИС-204;
- интегрированная система резервных приборов ИСРП-4;
- верхний пульт пилота ВПП.

Информационно-управляющее поле кабины самолёта Ту-204СМ с экипажем из 2-х пилотов

Основные выполняемые функции:

- решение задач навигационного обеспечения полёта самолёта;
- решение задач пилотирования самолёта при автоматическом, автоматизированном и директорном способах управления полётом самолёта по заданному плану полёта;
- контроль и индикация параметров и режимов работы силовой установки, общесамолётного оборудования, формирование и выдача экипажу самолёта мнемонической, текстовой, звуковой и речевой сигнальной информации;
 - формирование и отображение экипажу самолёта:
 - а) пилотажно-навигационной информации;
 - б) информации о плане полёта и состоянии выполнения полётного задания;
 - в) информации о метеонавигационной обстановке;
 - г) видеоинформации от круглосуточной обзорной системы;
 - д) картографической и аэронавигационной информации;
 - е) информации о потенциальной угрозе столкновения с поверхностью;
 - формирование и регистрация массива полётной информации;
- автоматизированная и ручная настройки радиотехнических систем навигации и посадки и радиосвязного оборудования;
 - комплексное обеспечение внутренней и внешней радиосвязью экипажа самолёта;

- создание оптимального светотехнического и эргономического климата кабины.

Информация о выполненной работе по БРЭО самолёта Ту-204СМ

В 2012 году ОАО «Ульяновским конструкторским бюро приборостроения» в рамках проекта по созданию БРЭО самолёта Ту-204СМ были выполнены следующие работы:

- 1. Завершена разработка КД на следующие комплексообразующие компоненты КБО:
 - комплексная система электронной индикации и сигнализации КСЭИС-204Е;
 - бортовая система справочной информации БССИ-204;
 - система управления общесамолётным оборудованием СУОСО-204;
 - бортовая система технического обслуживания БСТО-204;
 - система преобразования аналоговых и дискретных сигналов СПАДИ-204;
 - система измерения воздушных данных СИВД;
 - интегрированная система резервных приборов ИСРП-4;
 - пульты управления ПНО, РТО, ОСО и верхний пульт пилотов (всего 31);
 - светосигнальные табло и светильники внутрикабинного освещения.
- 2. Изготовлены опытные образцы блоков систем КСЭИС-204Е, БССИ-204, СУОСО-204, БСТО-204, СПАДИ-204, СИВД, ИСРП-4.

- 3. Завершена разработка и согласование схем соединений, протоколов информационного взаимодействия систем БРЭО.
- 4. Завершена разработка и согласование с ОАО «Туполев» программ функционирования систем КСЭИС-204Е, БССИ-204, СУОСО-204, БСТО-204, СПАДИ-204, СИВД, ИСРП-4.
- 5. Разработано программное обеспечения систем КСЭИС-204E, БССИ-204, СУОСО-204, БСТО-204, СПАДИ-204, СИВД, ИСРП-4. Процессы разработки ПО ведутся в соответствии с требованиями КТ-178B.
- 6. Проведена отработка функционирования ПО систем на автономных системных стендах и отработка взаимодействия систем на комплексном стенде ОАО «УКБП».
 - 7. На комплексном стенде с реальным бортовым оборудованием проведены отработки таких функций БРЭО как:
 - формирования и отображения пилотажно-навигационной информации;
- формирования и отображения информации о состоянии силовой установки и общесамолётного оборудования;
 - распределения и управления коммутацией электропитания бортовых потребителей;
 - управления самолётными агрегатами;
 - формирования и отображения метеоинформации.
- 8. Проведены межведомственные и квалификационные испытания систем КСЭИС-204Е, БССИ-204, СУОСО-204, БСТО-204, СПАДИ-204, СИВД, ИСРП-4.