

Конкурс «Премия «Авиастроитель года» Номинация «За создание нового образца» «Создание авиационной аккумуляторной батареи 20КН-4»

1 Цель проекта создания аккумуляторной батареи 20КН-4

Проектирование, разработка и освоение производства малогабаритного вторичного источника постоянного тока для питания бортовой аппаратуры перспективного российского вертолета Ми-38 — средств освещения кабины экипажа и пассажирской кабины, навигационных и аварийно-спасательных систем, бортовых ЭВМ, а также прочих приемников, требующих автономного питания, при отказе основной системы электроснабжения с номинальным напряжением 27 В постоянного тока по ГОСТ Р 54073-2010, а также при снижении напряжения в сети менее 18 В, что происходит при коммутации элементов электрической цепи, а также при запуске двигателей от стартерных батарей.

2 Описание батареи аккумуляторной 20КН-4

Батарея аккумуляторная 20КН-4 относится к вторичным (перезаряжаемым) химическим источникам тока с щелочным водным электролитом. Батарея включает 20 последовательно соединенных призматических аккумуляторов, установленных в металлический корпус. Корпус выполнен в непроливаемом герметизированном исполнении во избежание вытекания раствора электролита в аккумуляторный отсек воздушного судна. Все детали батареи защищены от коррозии. Также батарея имеет вентиляционную трубку, которая подключается к бортовой системе вентиляции, для отвода образующейся в процессе заряда водородно-кислородной смеси за пределы воздушного судна. Подключение батареи к бортовой сети производится через электрическую розетку СНЦ23-3/14Р-1-В.

Батарея изготавливается в соответствии с техническими условиями НДКЕ.563521.020ТУ во всеклиматическом исполнении по ГОСТ 15150-69. Для размещения батареи не требуется применение специального аккумуляторного отсека.

Технические характеристики:	
Номинальная ёмкость, А·ч	4
Разрядная ёмкость при часовом режиме, А·ч,	3,6
Номинальное напряжение, В	
Напряжение разомкнутой цепи заряженной батареи, В В	25
Удельная энергия, Вт·ч/кг, не менее	20
Наибольший ток разряда при кратковременной нагрузке, А	40
Наибольший ток разряда при длительной нагрузке, А	
Саморазряд при хранении в течение 30 суток, %, не более	
Габаритные размеры, мм, не более	
់ - длина	205
- ширина	
- высота	122
Масса с электролитом, кг, не более	
Ресурс в течение срока службы, ч, не менее	
Срок сохраняемости в разряженном состоянии до ввода	
в эксплуатацию, мес	30
Срок сохраняемости в заряженном состоянии, суток, не менее	
Срок службы батареи, лет, не менее	
-p	

Внешние воздействующие факторы и их характеристики в соответствии с квалификационными требованиями KT-160D

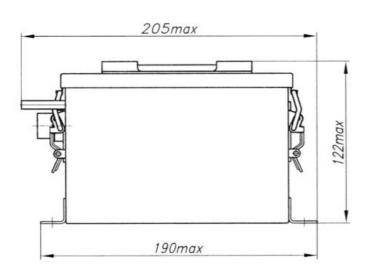
Вид			Раздел и
	Vanautoniastiauja	Значения	
воздействующего	Характеристики	характеристик	категория
фактора			по КТ-160D
Синусоидальная	Амплитуда ускорения, м/c² (g)	100 (10)	
вибрация	Диапазон частот, Гц	От 50 до 2000	
	Амплитуда пост. смещения, мм	1,0	раздел 8.0
	Диапазон частот, Гц	От 10 до 50	категория RG
Широкополосная	Диапазон частот, Гц	От 20 до 2000	категория ка
случайная	Среднеквадр. ускорение, м/с² (g)	100 (10)	
вибрация	Спектр. плотность ускор., g²/Гц	0,05	
Механический	Пиковое ударное ускор., м/с² (g)	200 (20)	2222270
удар одиночного	Длительность действия ударного		раздел 7.0
действия	ускорения, мс	11 ± 4	категория В
Механический	Пиковое ударное ускор., м/c² (g)	150 (15)	
удар	Длительность действия ударного		раздел 7.0
многократного	ускорения, мс	6 ± 2	категория В
действия			'
Пониженное	D		
атмосферное	Величина давления, кПа	37,6 (282)	раздел 4.0
давление	(мм рт.ст.)		категория В1
Повышенная	1) Предельная рабочая, ⁰С	55	
температура	2) Предельная рабочая при		раздел 4.0
окружающей	кратковременном воздействии, ⁰С	70	категория В1
среды	3) Предельн. при бездействии, ^о С	85	l
Пониженная	- 7 - 1 - 3 - 3 - 3 - 3 - 3 - 3 - 3 - 3 - 3		
температура	1) Предельная рабочая, ⁰С	минус 20	раздел 4.0
окружающей	2) Предельная при бездействии, ⁰С	минус 55	категория В1
среды			
Изменение	Диапазон температур	от минус 20 до	раздел 5.0
температуры	при функционировании	плюс 55	категория В
Повышенная	Предельная относ. влажность, %	98	раздел 6.0
влажность	Температура, ^о С	40	категория А
Плесневые	Относит. влажность, %	от 95 до 98	раздел 13.0
грибы	Температура, ^о С	30	категория F
Соляной	Водность, г/м ³	от 2 до 3	•
(морской)	Температура, °С	40	раздел 14.0
туман	Наибольшая дисперсность, мкм	20	категория S
Tyman	Палоольшал дисперспость, wikiwi		

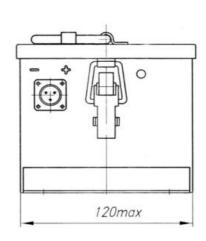
Продолжительность разряда батареи при различных температурах и токах

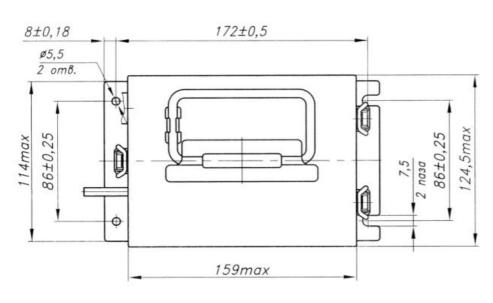
_ продолжительность разряда оатарей при различных температурах и токах									
	Температура, ⁰С								
Сила тока, А	минус (18±2)		плюс (5±2)		плюс (25±10)		плюс (50±2)		
	время, мин	конечное напряже- ние, В	время, мин	конечное напряже- ние, В	время, мин	конечное напряже- ние, В	время, мин	конечное напряже- ние, В	
0,8	210	20	275	20	300	20	285	20	
4	25	20	43	20	60	20	45	20	
8	10	18	20	20	25	20	20	20	
10	5,3	18	15	18	20	20	15	20	
20	1,2	16	2	16	4	16	3	18	

Особенности конструкции

Несмотря на развитие других электрохимических систем и ужесточение экологических требований, никель-кадмиевые аккумуляторы остаются основным выбором для высоконадёжных устройств, потребляющих большую мощность. Можно выделить следующие достоинства разработанной батареи:


- Компактность и герметизация при малых весе и габаритах батареи позволяют встраивать её в сложные схемы;
- Наладка отсутствует ("подключил и работай");
- Конструкция обеспечивает высокую ударо- и вибропрочность, пожаро- и взрывобезопасность;
- Внедренные в активные материалы электродов стабилизирующие добавки значительно повышают эффективность заряда в буферном режиме и позволяют применять батарею в специфических условиях бортовой электросети без применения электронных средств контроля;
- Отсутствие деградации ёмкости при низких степенях заряженности, которые характерны для аккумуляторных батарей, функционирующих на вертолётах, является неоспоримым преимуществом по сравнению с батареями других электрохимических систем - свинцово-кислотной, литий-ионной, никельметаллогидридной;
- Обслуживание при длительном хранении батареи не требуется;
- Батарея нетребовательна к типу зарядного устройства, что даёт возможность быстрого и простого заряда в любом режиме;
- Межрегламентный период составляет 3 месяца; при этом процесс технического обслуживания упрощен, поскольку не требуется замены электролита в течение всего срока службы;
- Технологичность конструкции в сочетании с запасом прочности всех деталей (узлов) обеспечивают многолетнюю наработку при низких эксплуатационных расходах;
- Батарея сохраняет работоспособность в широком интервале рабочих токов заряда, разряда и температур окружающей среды.


3 Перспективы применения


Обслуживание аккумуляторной батареи не отличается от обслуживания на подавляющем типе авиационных аккумуляторных никель-кадмиевых батарей и потому не требует дополнительных материальных затрат и специального обучения обслуживающего персонала.

Аккумуляторная батарея может использоваться на любых видах летательных аппаратов, как при работе в бортовой сети в качестве дополнительного источника энергии для приемников всех категорий, установленных на воздушном судне, так и в качестве резервного источника питания постоянной готовности при аварийном отключении бортовой сети или выходе из строя основных аккумуляторных батарей.

