к заявке на участие в конкурсе на соискание премии «Авиастроитель года»

Краткое описание выполненной работы

С целью повышения эффективности лётных испытаний авиационных боевых комплексов (АБК) и достоверности оценок результатов лётных экспериментов впервые разработан, изготовлен и использован в лётных испытаниях АБК мобильный полигонный комплекс, обеспечивающий организацию мишенной обстановки, оперативный сбор измерительной и регистрируемой информации с мишенных полей, передачу информации на командный пункт управления (КПУ) лётным экспериментом (ЛЭ), экспресс – обработку, отображение информации в реальном времени на КПУ и управление ЛЭ.

Наименование работы

«Создание мобильного полигонного комплекса сбора данных для информационного обеспечения летного эксперимента»

Разработчик мобильного полигонного комплекса

Разработчиками мобильного полигонного комплекса является коллектив специалистов ФГУП «ГосНИИАС».

Назначение мобильного полигонного комплекса

Созданный мобильный полигонный комплекс (МПК) предназначен для оперативной организации на мишенном поле (МП) полигона условий, необходимых для проведения лётных испытаний оптико-электронных систем (ОЭС) АБК и авиационных средств поражения (АСП) класса «воздух-поверхность», получения информации в темпе проведения ЛЭ для оперативного анализа и достоверной оценки его результатов.

Состав технических и программных средств МПК и его функциональные возможности позволяют решать следующие задачи:

- создавать мишенные обстановки с использованием пневматических имитаторов военной техники;
- получать качественное изображение и информационные характеристики мишенной обстановки в видимом и в ИК диапазонах;
- регистрировать на мишенной обстановке положение пятна лазерного дальномера- целеуказателя;
- определять координаты объектов и мест установки измерительных систем на миненной обстановке с высокой точностью;
- определять координаты точек падения авиационных средств поражения (АСП) в темпе проведения эксперимента;

- регистрировать точное время контакта АСП с поверхностью земли с целью синхронизации измерительной информации с различными информационными источниками;
- обеспечивать скоростную видеорегистрацию движения АСП на конечном участке траектории;
- регистрировать прямые попадания АСП в мишень, выполненную из металлических конструкций;
- принимать радиотелеметрическую информацию от АСП;
- обеспечивать дистанционное управление вспомогательным оборудованием, устанавливаемым на мишенных полях;
- осуществлять экспресс обработку и отображение зарегистрированной в лётном эксперименте информации на командном пункте управления ЛЭ;
- обеспечивать оперативную связь на полигоне;
- обеспечивать электропитанием оборудование, устанавливаемое на мишенных полях.

Все оборудование МПК и обслуживающий его персонал доставляются к месту проведения работы на автомобиле повышенной проходимости.

Актуальность создания МПК

Проведённые исследования специалистами ФГУП «ГосНИИАС» в области измерений и регистрации параметров, необходимых для достоверных оценок характеристик ОЭС АБК и АСП класса «воздух-поверхность» показали, что существующее в настоящее время оборудование наземных авиационных полигонов не отвечает современным требованиям, постоянно повышающимся в связи с расширением функциональных возможностей АБК, обновлением номенклатуры АСП, развитием способов и средств их применения, повышением точностных характеристик, как бортовых информационных систем, так и самих АСП.

Недостатки в оснащении инфраструктуры авиационных полигонов делают актуальной задачу разработки и создания мобильных полигонных комплексов. обладающих возможностями использования необорудованных полигонах, оперативного формирования мишенной обстановки и размещения в районе мишенного поля измерительных и регистрирующих систем, необходимых при проведении конкретного ЛЭ. Очевидно, что актуальность создания МПК и их совершенствования возрастает по мере развития авиационных комплексов и разработки перспективных АСП.

Краткое описание достигнутых результатов

На основании многолетнего опыта, полученного специалистами ФГУП «ГосНИИАС» в процессе участия в ЛИ АБК, был проведен анализ существующих возможностей полигонов в обеспечение лётных испытаний модернизируемых и перспективных АБК. На его основе определены технические испытательные средства МПК, необходимые для решения задач ЛИ ОЭС АБК и АСП класса «воздух-поверхность», которые дополняют инфраструктуру полигонов, что позволяет существенно увеличить объем получаемой информации, необходимой для эффективного анализа и достоверной оценки результатов ЛИ ОЭС АБК и АСП.

Значительная часть задач, возлагаемых на МПК решается с помощью систем и устройств, специально разработанных и изготовленных ФГУП «ГосНИИАС». К ним относятся:

- система регистрации лазерного пятна (СРЛП), позволяющая определять характеристики лазерного целеуказания на мишенной обстановке;
- система регистрации лазерного луча (СРЛ), предназначенная для определения положения лазерного пятна на вертикальной плоскости мишени и юстировки прицельного перекрестия с оптической осью лазерного целеуказателя ОЭС;
- телевизионная (ТВ) система, предназначенная для дистанционного наблюдения за мишенным полем и определения координат точки падения АСП;
- система регистрации быстрых процессов (СРБП), с помощью которой может производится скоростная видео-съемка движения АСП на конечном участке траектории и других процессов, протекающие с высокой скоростью;
- сейсмическая система, позволяющая определять точное время контакта АСП с поверхностью земли;
- система регистрации прямых попаданий (СРПП), предназначенная для определения числа попаданий небольших АСП в металлическую мишень с помощью вибродатчика;
- устройства дистанционного управления по радиоканалу для оборудования, устанавливаемого на полигоне, для обеспечения безопасности персонала.

Для обеспечения функционирования всех разработанных систем МПК и получения с их помощью необходимой информации разработано специальное программное обеспечение (СПО) и соответствующее методическое обеспечение.

Внешний вид созданного в ФГУП «ГосНИИАС» мобильного комплекса показан на рисунке 1. Состав оборудования, загружаемого в кузов автомашины, определяется задачами конкретного ЛЭ.

Для организации мишенных обстановок в состав МПК входят пневматические макеты танка Т-80 и СУО ЗРК Бук. Такие полноразмерные макеты военной техники позволяют оперативно создавать мишенную обстановку с демаскерующими признаками близкими к реальным целям в видимом, инфракрасном и радиолокационном диапазонах на различных подстилающих поверхностях. Общий вид макета танка Т-80 показан на рисунке 2.

Рисунок 1а – МПК в комплектации с имитаторами Т-80 и СОУ ЗРК Бук

Рисунок 1б – МПК в комплектации с СРЛП-4

Рисунок 2 — полноразмерный макет T-80

Система регистрации лазерного пятна построена фотоприемников, размещаемых на мишенном поле в виде матрицы. Один из вариантов размещения матрицы СРЛП на реальной мишени показан на Информация, рисунке 3a. зарегистрированная фотоприемниками, оказавшимися в луче лазерного излучения, передается в реальном времени по радиоканалу на КПУ полигона, обрабатывается и визуализируется на экране монитора компьютера СРЛП с отображением на КПУ текущих координат центра пятна относительно центра мишени - рисунок 3б - то есть ошибку целеуказания.

Рисунок 3a – матрица СРЛП на мишени

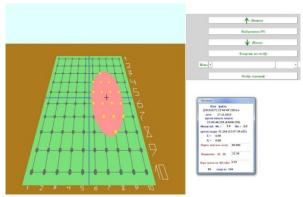


Рисунок 3б - отображение лазерного пятна на мониторе СРЛП

В зависимости от информации, полученной на КПУ в реальном времени, руководитель ЛЭ имеет возможность повторить контрольный полёт или, в случае неудовлетворительной оценки точности лазерного целеуказания, отменить ЛЭ, тем самым сократить количество незачётных полётов.

В состав МПК входит четыре СРЛП, из которых, при необходимости, комплексируется четырёхпозиционная система СРЛП-4. С её помощью обеспечивается регистрация ЛП на четырех мишенях одновременно в одном ЛЭ.

СРЛП использовалась практически во всех ЛИ ОЭС АБК с лазерными системами целеуказателями-дальномерами и АСП с лазерными ГСН.

Второй версией системы, предназначенной для определения положения лазерного пятна (ЛП), является система регистрации луча. Основное назначение этой системы — регистрация ЛП на вертикальных (наклонных) плоскостях мишеней. СРЛ выполнена в виде оптической камеры — рисунок 4a - с матрицей фотоприемников, регистрирующих сфокусированное на них оптикой изображение лазерного пятна.

Рисунок 4а - камера СРЛ

Рисунок 4б – использование СРЛ на мишени – щит

СРЛ используется в наземных отработках бортовых систем дальнометрирования и целеуказания. Средства обработки и отображения в реальном времени информации, регистрируемой СРЛ, а также возможности по её последующей обработки и документирования сходны с СРЛП.

До настоящего времени не существует средств, предназначенных для определения положения лазерного пятна на мишени, альтернативных СРЛП и СРЛ, поэтому эти системы постоянно востребованы в ЛИ. В течение 2016 и 2017 годов они применялись в ЛЭ практически во всех АБК с лазерными системами целеуказания и АСП класса «воздух-поверхность».

Тепловизионная система. Три тепловизора в составе МПК интегрируются на аппаратно-программном уровне в тепловизионную (ТП) систему (рисунок 5). Тепловизоры могут устанавливаться на платформе

(ОПУ), опорно-поворотного устройства помощью которого cИХ визирования перемещается плоскостях с совмещенная линия в двух обеспечением возможности дистанционного управления. ТП-система позволяет получать ИК-изображения в разных тепловых диапазонах одновременно, измерять температуру и тепловой контраст мишеней.

Рисунок 5а – ТПсистема

Рисунок 5б - ТПсистема на платформе ОПУ

Рисунок 5в – изображение мишени в ИК-диапазоне

система (ТВС) Телевизионная составе МΠК обеспечивает В регистрацию траектории АСП на конечном участке наведения на цель, определение координат точек падения АСП и наблюдение за мишенным полем. В состав ТВС входит два видеопоста (рисунок 6), устанавливаемых на минимально возможном удалении от мишени (с учетом условий сохранения их от повреждений) и приемного терминала. Информация от видеопостов передается в реальном времени на КПУ с помощью широкополосного радиоканала на расстояние до 10 км. По полученному изображению мишени в момент контакта с ней АСП производится определение величины промаха АСП относительно мишени с помощью специального программного обеспечения.

Рисунок 6 – Видеопост ТВС

Рисунок 7а – Позиция СРБП

Рисунок 7б – Кадр СРБП

Система регистрации быстрых процессов построена на основе скоростной видеокамеры и твердотельного накопителя. Позиция СРБП, развернутая на полигоне, показана на рисунке 7а. СРБП позволяет получать видеозапись контролируемого процесса длительностью до 20 минут со скоростью записи 25-500 кадров/с. Точность привязки зарегистрированных кадров изображений к единому времени обеспечивается с помощью сигналов GPS/ГЛОНАСС. На рисунке 7 б показан фрагмент кадра видеозаписи (200 кадров/с) конечного участка траектории АСП. Для обеспечения управления дистанционного работой видеокамеры ПО радиоканалу специальные устройства необходимое программное разработаны И обеспечение.

Геодезическая привязка мишеней, точек падения АСП, мест установки измерительных и регистрирующих средств на мишенных полях производится с помощью входящего в состав МПК комплекта приемников спутниковой навигации (ПСН). В зависимости от точности геодезической привязки в МПК используются приёмники различного класса точности. Для измерения координат объектов МО с высокой точностью используется ПСН геодезического класса с постобработкой информации. Для оперативного измерения координат используются ПСН GPS/ГЛОНАСС более низкого класса точности. По измеренным координатам, необходимости, оперативно определяются расстояния между точками измерений и углы пеленгов между ними. ПСН также могут использоваться при оценке точности бортовых лазерных дальномеров экспериментах.

Обработка информации, регистрируемой техническими средствами МПК, осуществляется с помощью вычислительных систем, организованных на основе мобильных компьютеров, выполненных в защищенном исполнении. Для обеспечения обработки всех видов поступающей информации разработан большой пакет специального программного обеспечения с удобным пользовательским интерфейсом, с помощью которого выполняется обработка информации, как в темпе её поступления, так и после окончания ЛЭ.

В 2016-2017 г.г. МПК был использован в ЛЭ и наземной отработке бортовых ОЭС АБК: МиГ-29, Су-30, Су-34, Су-35, Т-50 и при отработке ряда перспективных АСП.

Возможные области применения

В качестве дополнения существующей инфраструктуры авиационных наземных полигонов с целью повышения их эффективности в части увеличения числа регистрируемых в ЛЭ параметров и повышения их точности. На аэродромах при проведении наземных проверок работоспособности бортового оборудования и его настройки.

Развитие МПК

ΜПК использования Возможности на полигонах планируется наращивать путем повышения характеристик уже существующего в его составе измерительных и регистрирующих систем, а также продолжая разработки дополнительных технических программных И средств, необходимость в которых возникает по мере усложнения ЛЭ, обусловленных повышением возможностей авиационных комплексов АСП. необходимым первоочередным разработкам для интеграции их в МПК можно отнести следующие:

- оборудование для оценки разрешающей способности бортовых ОЭС в видимом и ИК-диапазоне – штриховые миры;
- система регистрации лазерного пятна для подвижных целей;
- мобильная метеостанция для регистрации атмосферных условий, в которых проводятся оценки характеристик ОЭС и АСП.